Prefrontal Neural Activity When Feedback Is Not Relevant to Adjust Performance
نویسندگان
چکیده
It has been shown that the rostral cingulate zone (RCZ) in humans uses both positive and negative feedback to evaluate performance and to flexibly adjust behaviour. Less is known on how the feedback types are processed by the RCZ and other prefrontal brain areas, when feedback can only be used to evaluate performance, but cannot be used to adjust behaviour. The present fMRI study aimed at investigating feedback that can only be used to evaluate performance in a word-learning paradigm. One group of volunteers (N = 17) received informative, performance-dependent positive or negative feedback after each trial. Since new words had to be learnt in each trial, the feedback could not be used for task-specific adaptations. The other group (N = 17) always received non-informative feedback, providing neither information about performance nor about possible task-specific adaptations. Effects of the informational value of feedback were assessed between-subjects, comparing trials with positive and negative informative feedback to non-informative feedback. Effects of feedback valence were assessed by comparing neural activity to positive and negative feedback within the informative-feedback group. Our results show that several prefrontal regions, including the pre-SMA, the inferior frontal cortex and the insula were sensitive to both, the informational value and the valence aspect of the feedback with stronger activations to informative as compared to non-informative feedback and to informative negative compared to informative positive feedback. The only exception was RCZ which was sensitive to the informational value of the feedback, but not to feedback valence. The findings indicate that outcome information per se is sufficient to activate prefrontal brain regions, with the RCZ being the only prefrontal brain region which is equally sensitive to positive and negative feedback.
منابع مشابه
Separable neural mechanisms contribute to feedback processing in a rule-learning task.
To adjust performance appropriately to environmental demands, it is important to monitor ongoing action and process performance feedback for possible errors. In this study, we used fMRI to test whether medial prefrontal cortex (PFC)/anterior cingulate cortex (ACC) and dorsolateral (DL) PFC have different roles in feedback processing. Twenty adults completed a rule-switch task in which rules had...
متن کاملHow instructed knowledge modulates the neural systems of reward learning.
Recent research in neuroeconomics has demonstrated that the reinforcement learning model of reward learning captures the patterns of both behavioral performance and neural responses during a range of economic decision-making tasks. However, this powerful theoretical model has its limits. Trial-and-error is only one of the means by which individuals can learn the value associated with different ...
متن کاملWisconsin Card Sorting revisited: distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging.
The Wisconsin Card Sorting Task (WCST) has been used to assess dysfunction of the prefrontal cortex and basal ganglia. Previous brain imaging studies have focused on identifying activity related to the set-shifting requirement of the WCST. The present study used event-related functional magnetic resonance imaging (fMRI) to study the pattern of activation during four distinct stages in the perfo...
متن کاملDefining the neural mechanisms of probabilistic reversal learning using event-related functional magnetic resonance imaging.
Event-related functional magnetic resonance imaging was used to measure blood oxygenation level-dependent responses in 13 young healthy human volunteers during performance of a probabilistic reversal-learning task. The task allowed the separate investigation of the relearning of stimulus-reward associations and the reception of negative feedback. Significant signal change in the right ventrolat...
متن کاملNeural correlates of rules and conflict in medial prefrontal cortex during decision and feedback epochs
The ability to properly adjust behavioral responses to cues in a changing environment is crucial for survival. Activity in the medial Prefrontal Cortex (mPFC) is thought to both represent rules to guide behavior as well as detect and resolve conflicts between rules in changing contingencies. However, while lesion and pharmacological studies have supported a crucial role for mPFC in this type of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012